On a Certain Type of Space-Tableau
نویسندگان
چکیده
منابع مشابه
A new sequence space and norm of certain matrix operators on this space
In the present paper, we introduce the sequence space [{l_p}(E,Delta) = left{ x = (x_n)_{n = 1}^infty : sum_{n = 1}^infty left| sum_{j in {E_n}} x_j - sum_{j in E_{n + 1}} x_jright| ^p < infty right},] where $E=(E_n)$ is a partition of finite subsets of the positive integers and $pge 1$. We investigate its topological properties and inclusion relations. Moreover, we consider the problem of fin...
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
The Uniqueness of a Certain Type of Subdirect Product
We introduce the "$type{lffs}$ subdirect product" and show that every ring is uniquely a $type{lffs}$ subdirect product of a family of $simple{basicls}$ rings. Also we show some applications.
متن کاملOn meromorphic solutions of certain type of difference equations
We mainly discuss the existence of meromorphic (entire) solutions of certain type of non-linear difference equation of the form: $f(z)^m+P(z)f(z+c)^n=Q(z)$, which is a supplement of previous results in [K. Liu, L. Z. Yang and X. L. Liu, Existence of entire solutions of nonlinear difference equations, Czechoslovak Math. J. 61 (2011), no. 2, 565--576, and X. G. Qi...
متن کاملa new sequence space and norm of certain matrix operators on this space
in the present paper, we introduce the sequence space [{l_p}(e,delta) = left{ x = (x_n)_{n = 1}^infty : sum_{n = 1}^infty left| sum_{j in {e_n}} x_j - sum_{j in e_{n + 1}} x_jright| ^p < infty right},] where $e=(e_n)$ is a partition of finite subsets of the positive integers and $pge 1$. we investigate its topological properties and inclusion relations. moreover, we consider the problem of fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1954
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500021337